Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions.
translated by 谷歌翻译
Generative Knowledge Graph Construction (KGC) refers to those methods that leverage the sequence-to-sequence framework for building knowledge graphs, which is flexible and can be adapted to widespread tasks. In this study, we summarize the recent compelling progress in generative knowledge graph construction. We present the advantages and weaknesses of each paradigm in terms of different generation targets and provide theoretical insight and empirical analysis. Based on the review, we suggest promising research directions for the future. Our contributions are threefold: (1) We present a detailed, complete taxonomy for the generative KGC methods; (2) We provide a theoretical and empirical analysis of the generative KGC methods; (3) We propose several research directions that can be developed in the future.
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance.
translated by 谷歌翻译
回答有关知识图(KG)的复杂查询是一项重要但具有挑战性的任务,因为在推理过程中存在KG不完整问题和级联错误。最近的查询嵌入(QE)方法将实体和关系嵌入kg中,并将一阶逻辑(fol)查询纳入一个低维空间,从而通过密集的相似性搜索来回答查询。但是,以前的作品主要集中在目标答案上,忽略了中间实体的实用性,这对于缓解逻辑查询答案中的级联错误问题至关重要。此外,这些方法通常是用自己的几何或分配嵌入设计的,以处理逻辑运算符,例如联合,交叉路口和否定,并牺牲了基本操作员的准确性 - 投影,他们无法吸收其他嵌入方法,以使其吸收其他嵌入方法楷模。在这项工作中,我们提出了一个神经和象征性的纠缠框架(ENESY),以进行复杂的查询答案,这使神经和象征性推理可以相互增强以减轻级联错误和kg不完整。 Enesy中的投影操作员可以是具有链接预测能力的任何嵌入方法,并且其他FOL操作员无需参数处理。随着神经和象征性推理的结果,合奏中的Enesy答案查询。 Enesy在几个基准上实现了SOTA性能,尤其是在培训模型的设置中,仅具有链接预测任务。
translated by 谷歌翻译
基于多模式方面的情感分类(MABSC)是一项新兴的分类任务,旨在将给定目标的情感分类,例如具有不同模式的数据中提到的实体。在带有文本和图像的典型多模式数据中,以前的方法不能充分利用图像的细颗粒语义,尤其是与文本的语义结合在一起,并且不完全考虑对细粒图像之间的关系进行建模信息和目标,这导致图像的使用不足和不足以识别细粒度的方面和意见。为了应对这些局限性,我们提出了一个新的框架SEQCSG,包括一种构建顺序跨模式语义图和编码器模型的方法。具体而言,我们从原始图像,图像标题和场景图中提取细粒度的信息,并将它们视为跨模式语义图的元素以及文本的令牌。跨模式语义图表示为具有多模式可见矩阵的序列,指示元素之间的关系。为了有效地利用跨模式语义图,我们建议使用目标提示模板的编码器解码器方法。实验结果表明,我们的方法优于现有方法,并在两个标准数据集MABSC上实现了最新方法。进一步的分析证明了每个组件的有效性,我们的模型可以隐含地学习图像的目标和细粒度信息之间的相关性。
translated by 谷歌翻译
零击学习(ZSL)旨在预测看不见的课程,其样本在培训期间从未出现过,经常利用其他语义信息(又称侧信息)来桥接培训(见过)课程和看不见的课程。用于零拍图像分类的最有效且最广泛使用的语义信息之一是属性,是类级视觉特征的注释。但是,由于细粒度的注释短缺,属性不平衡和同时出现,当前方法通常无法区分图像之间的那些微妙的视觉区别,从而限制了它们的性能。在本文中,我们提出了一种名为Duet的基于变压器的端到端ZSL方法,该方法通过自我监督的多模式学习范式从审前的语言模型(PLM)中整合了潜在的语义知识。具体而言,我们(1)开发了一个跨模式的语义接地网络,以研究模型从图像中解开语义属性的能力,(2)应用了属性级的对比度学习策略,以进一步增强模型对细粒视觉特征的歧视反对属性的共同出现和不平衡,(3)提出了一个多任务学习策略,用于考虑多模型目标。通过对三个标准ZSL基准测试和配备ZSL基准的知识图进行广泛的实验,我们发现二重奏通常可以实现最新的性能,其组件是有效的,并且其预测是可以解释的。
translated by 谷歌翻译
知识图(kg)及其本体论的变体已被广泛用于知识表示,并且已证明在增强零拍学习(ZSL)方面非常有效。但是,利用KGS的现有ZSL方法都忽略了KGS中代表的类间关系的内在复杂性。一个典型的功能是,一类通常与不同语义方面的其他类别有关。在本文中,我们专注于增强ZSL的本体,并建议学习以本体论属性为指导的解剖本体嵌入,以捕获和利用不同方面的更细粒度的类关系。我们还贡献了一个名为dozsl的新ZSL框架,该框架包含两个新的ZSL解决方案,分别基于生成模型和图形传播模型有效地利用了分解的本体学嵌入。已经对零摄像图分类(ZS-IMGC)和零射Hot KG完成(ZS-KGC)进行了五个基准测试进行了广泛的评估。 Dozsl通常比最先进的表现更好,并且通过消融研究和案例研究证实了其组成部分。我们的代码和数据集可在https://github.com/zjukg/dozsl上找到。
translated by 谷歌翻译